Workshop "Neueste Entwicklungen auf dem Gebiet der LT/HT-Supraleiter"

Fe-basierte Supraleiter

Eigenschaften, Herstellung und Anwendungsperspektiven

Dr. Ruben Hühne

Funktionale Oxidschichten und Supraleiter Institut für Metallische Werkstoffe IFW Dresden

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

Inhalt

- Grundlegende Eigenschaften
 - Materialien
 - Phasendiagramm
 - Verhalten im Magnetfeld
 - Stromtragfähigkeit
- Herstellung von Leitermaterialien
 - Dünnschichtherstellung
 - PIT Technologie
- Anwendungsperspektiven

Matthias' Regeln für hohes T_c (~1960)

- Hohe Symmetry
- Hohe Zustandsdichte bei E_F
- Kein Sauerstoff
- Kein Magnetismus \rightarrow Kein Eisen!
- Keine Isolatoren

Bernd T. Matthias

Entdeckung Fe-basierter Supraleiter

Gruppe von Prof. Hideo Hosono (Tokyo Institute of Technology)

Schwerpunkt der Arbeiten: transparente / magnetische Halbleiter

 $T_{\rm c} \sim 4 \ {\rm K}$

*T*_c ~ 26 K

→ Neuer "Goldrausch" in der Supraleiterforschung

Fe-basierte Supraleiter

- Riesige Vielfalt an Verbindungen
- Sprungtemperaturen bis 56 K (Sm1111)
- Monolage FeSe on SrTiO₃: ~110 K
- Lagenartige Kristallstruktur, gemeinsames Element: FePn- bzw. FeCh-Lagen

Lee et al., Solid State Communications 152 (2012) 644–648 Wang, Hosono, Dai (ed.) Iron Based Superconductors, CRC Press, 2013

Fe-basierte Supraleiter

Dr. R. Hühne | Workshop Hanau 2016

Phasendiagramm Fe-basierte Supraleiter

J. Paglione et al., Nat. Physics 6 (2010) 645

S. Kasahara et al., Nature 486 (2012) 382

Phasendiagramm Fe-basierte Supraleiter

Einflußfaktoren auf Supraleitung

Dr. R. Hühne | Workshop Hanau 2016

Verspannungsinduzierte Supraleitung in BaFe₂As₂

Dr. R. Hühne | Workshop Hanau 2016

Einfluß der Verspannung auf Ba(Fe_{1-x}Co_x)₂As₂

→ Optimale Dotierung ist vom Spannungszustand abhängig!

K. lida et. al., Sci. Reports (2016) submitted

Eigenschaften in hohen Magnetfeldern

60 Ba0.55K0.45Fe As2 FeSe_T 50-Bi2Sr2CaCu208+ Sm-1111 40-Field (Tesla) NdFeAsO F 20 Nb_Sn (Bil'b) Sr. Ca. Cu. 10-20 80 100 60 Temperature (Kelvin) $BaFe_{2}(As_{1-x}P_{x})_{2}$

Temperaturabhängigkeit des oberen kritischen Feldes H_{c2}

- Sehr hohe obere kritische Felder
- Geringere Anisotropie im Vergleich zu Kupraten
- Epitaktische MBE-Schichten
- Anstieg f
 ür H_{c2} (T) f
 ür "1111" ist unter den h
 öchsten f
 ür supraleitende Materialien
- Anisotropie des oberen kritischen Feldes klein f
 ür "122" Verbindungen

A. Gurevich, Rep. Prog. Phys. **74,** 124501 (2011) K. lida et al, Sci Rep, 3:2139 (2013) F. Kurth et al., Appl. Phys. Lett. (2015)

- Temperatur- und Winkelabhängigkeit des oberen kritischen Feldes mit Zweibandmodell erklärbar
- > $J_{\rm c}$ Anisotropie bestimmt von $H_{\rm c2}$ Anisotropie und vorhandenen Defekten

J. Hänisch et al. Sci. Reports 5 (2015) 17363

J_c Anisotropie sauberer Ba122-Schichten

Beispiel Ba(Fe_{0.9}Co_{0.1})₂As₂

- Relativ geringe absolute $J_{\rm c}$ Werte
- Maximum bei B||ab:
 - 1. Elektronische Anisotropie
 - 2. Pinning an planaren Defekten und an Oberflächen
- Kein Maximum f
 ür B||c: keine korrelierten Defekte

K. lida et al., PRB 81, 100507(R) (2010)

Pinningzentren in Ba122-Schichten

Pinning an Liniendefekten

Selbstorganisierte BaFeO₂ Nanosäulen

T = 14 K 8 • 1T 4 T 🔺 8 T 6 $J_{\rm c}$ (× 10⁴ A cm⁻²) m_{mm} 5 3 2 ΗIC H 🛛 ab 0 80 100 140 160 120 180 200 θ (°)

→ Starker c-Achsenpeak

S. Lee et al, Nat. Material 9, 397 (2010)

Y. Zhang et al, APL 98, 042509 (2011)

Pinningzentren in Ba122-Schichten

Quasimultilagen (3D + 1D Defekte)

(13.3 nm Co-doped Ba-122 + 3.3 nm pure Ba-122)x24 Total thickness 400 nm

C. Tarantini et al, PRB 86, 214504 (2012) S. Lee et al., Nat. Mater. 12 (2013) 392

\rightarrow Verbesserung von J_c für alle Feldrichtungen

Dr. R. Hühne | Workshop Hanau 2016

Verbesserung der Pinningeigenschaften

- O BaFe₂As₂:P (this work, 4K)
 - BaFe₂As₂:P + BZO (5K, ref.26)
- ◆ ◇ SmFeAsO_{1-x}F_x (4K,ref.27)
 - △ O-rich BaFe₂As₂:Co/BaFe₂As₂:Co SL (4K,ref.28)
- BaFe₂As₂:Co/Fe buffer (8K,ref.29)
- ▼ ▽ BaFe₂As₂:Co/Fe buffer/IBAD-MgO (4K,ref.30)
- Fe(Se,Te) (4K,ref.31)
 - ☆ BaFe₂As₂:Co (4K,ref.32)
 - BaFe₂As₂:P (this work @ 12K, 3T)
 - BaFe₂As₂:P + BZO (15K, 1T, ref.26)
 - O-rich BaFe₂As₂/BaFe₂As₂:Co SL (14K, 4T, ref.28)
 - STO / BaFe, As,: Co SL (11K, 4T, ref.28)
 - + BaFe₂As₂:P (10K, 3T, ref.7)
 - BaFe₂As₂:Co/Fe buffer (10K, 3T, ref.29)

H. Sato et al., APL 104 (2014) 182603

→ Vielfältige Variation der Anisotropie möglich wie bei Kupraten

Eigenschaften von Korngrenzen

Vergleich zu anderen Supraleitern

Hoch- T_c SL Niedrig-T_c SL geringe Anisotropie Lagenstruktur geringe therm. Fluktuationen Hohes T_c , hohes H_{c2} S-Wellen SL Unkonventionelle SL Metallisch Starke Korrelationen Nähe zu mag. Phasen Nb₃Sn Korngrenzenproblematik YBa₂Cu₃O₇ Bi-2212 [35] Hg-1223 [35] La214 [35] Y-123 [35] Multiband-SL (MgB₂) (Ba,K)Fe_As_ [22] NdFeAs(O,F) [24] BaFe, Co, As, [25] Rb, Fe, Se, [35 Fe(Se,Te) [26] 10-3-8 (this work) 10-4-8 (this work) 10^{3} ξ_{ab} (nm) λ_{ab} (nm) $T_{c}(K)$ $H_{c2}(T)$ 2 Nb₃Sn 11 200 18 25 10^{2} YBCO 2.2 92 >100120 37 14 MgB_2 10 50 10¹ Ba-122 3 25 200 60 Anisotropie Sm-1111 10° 2.5 200 55 > 1000.6 0.8 1.0 0.4FeAs/CuO₂ layer distance d (nm) Fe(Se,Te 1.5 500 16 55 F. Yuan et al., APL 107 (2015) 012602

Dr. R. Hühne | Workshop Hanau 2016

1.2

Inhalt

- Grundlegende Eigenschaften
 - Materialien
 - Phasendiagramm
 - Verhalten im Magnetfeld
 - Stromtragfähigkeit
- Herstellung von Leitermaterialien
 - Dünnschichtherstellung
 - PIT Technologie
- Anwendungsperspektiven

 on oxides
 III, 122, IIII. Fe buffer, GBs, IBAD
 IIII
 MBE, Ca-122

 PLD
 MBE
 Others
 Tokyo A&T: K:Ba-122, FeSe, 1111, flouride substrates

 Dr. R. Hühne | Workshop Hanau 2016
 10.04.2016
 21

Fe-basierte Dünnschichten mit PLD

Gepulster Laserstrahl auf Target \rightarrow stöchiometrisches Plasma des Targetmaterials \rightarrow Abscheidung auf Substrate

Fe-basierte Dünnschichten mit PLD

Herstellung in einem UHV setup unter in-situ RHEED Kontrolle

Substrate:

- Oxidische Einkristalle (MgO, LaAlO₃ etc.)
- Fluorit-Einkristalle (CaF₂, BaF₂, SrF₂)
- Piezokristalle (PMN-PT)
- Flexible Metallbänder (Hastelloy/IBAD-MgO)

K. lida et al, PRB 81, 100507 (2010)

S. Trommler et al., J. Phys.: Conf. Ser. 507 (2014) 012049

Substratabhängigkeit Fe-basierte Dünnschichten

Fe-basierte Dünnschichten mit MBE

Einzelne Quellen (e.g. Knudsenzellen) \rightarrow atomare oder "molekulare" Ströme \rightarrow Reaktion auf dem Substrat Substrat Elekronenstrahl 650°C As UHV 10⁻⁹ Torr O_2 **RHEED Schirm** Fe 150 nm / 5-10 min Sm Widerstandsheizung SmFe₃ Vorteile: Nachteile: Langsame Deposition möglich Relative teuer Saubere Schichten UHV notwendig (geringe Gute Epitaxy Raten!)

Fe-basierte Dünnschichten mit MBE

→ Hohe Strukturqualität

 \rightarrow Sehr hohe J_{c} (B) Werte mit geringer Magnetfeldabhängigkeit

K. lida et al, Sci. Rep, 3:2139 (2013) F. Kurth et al., APL 106 (2015) 072602

Eignung auch für Fe-basierte Supraleiter

Co dotiertes Ba122 auf IBAD-MgO

- Ba-122 Schichten erfolgreich abgeschieden
- In-plane FWHM f
 ür Ba-122 bis zu 1.7°
- Supraleitende Eigenschaften vergleichbar zu Schichten auf MgO Einkristallen

K. lida et al. APEX 4 (2010) 013103 S. Trommler et al. SUST 25 (2012) 084019

Dr. R. Hühne | Workshop Hanau 2016

28

Dr. R. Hühne | Workshop Hanau 2016

FeSe_{0.5}Te_{0.5} auf RABiTS mit PLD

→ Epitaktisches Wachstum möglich
 → Hohe Stromtragfähigkeit bei 4.2 K

W. Si et al., Nat. Comm. 4, 1347 (2013)

Powder in tube (PIT) Leiterentwicklung

Powder in tube (PIT) Leiter

Mechanisch legierter Ba_{0.6}K_{0.4}Fe₂As₂Leiter (NHMFL Tallahassee)

Powder in tube (PIT) Leiter

Dr. R. Hühne | Workshop Hanau 2016

PIT Leiter

34

PIT Leiter

Ex-situ Sn:SmFeAsO_{1-x}F_x Leiter (CAS Peking)

35 **IFV**

Inhalt

- Grundlegende Eigenschaften
 - Materialien
 - Phasendiagramm
 - Verhalten im Magnetfeld
 - Stromtragfähigkeit
- Herstellung von Leitermaterialien
 - Dünnschichtherstellung
 - PIT Technologie
- Anwendungsperspektiven

Anwendungsperspektiven

- Derzeit begrenztes Anwendungsgebiet
- Technologie für runde Drähte entwickelt sich schnell!
- Zusätzliche Anwendungen für SQUIDS und Strahlungsdetektoren

J. Shimoyama, Supercond. Sci. Technol. 27 (2014) 044002

Danksagung

- IFW: V. Grinenko, F. Kurth, J. Engelmann, S. Richter, F. Yuan, S. Trommler, E. Reich, T. Thersleff, M. Kidszun, S. Molatta, S. Haindl, M. Schulze, S. Aswartham[,] S. Wurmehl, B. Büchner, L. Schultz
- University Nagoya: K. lida, H. lkuta + group
- KIT: B. Holzapfel, J. Hänisch, M. Langer
- TU Dresden: P. Chekhonin, A. Pukenas, W. Skrotzki
- NHMFL Tallahassee: C. Tarantini, J. Jaroszynski
- SPIN Genova: M. Putti, C. Ferdeghini + group
- many more...

GRK 1621

Forschungsgemeinschaft

Danke für Ihre Aufmerksamkeit!

